EVENT 535 unmanned systems

Agisoft Processing Guide

Revision: May, 2023

Overview	3
Requirements	3
Adding photos for standard cameras	4
Adding photos for multispectral cameras	5
Reflectance calibration (for multispectral cameras only)	5
Run reflectance calibration (for multispectral cameras only)	7
Import references	8
Setting Geotag Accuracy	9
Camera Calibration	10
Align Photos	12
Optimize camera locations	14
Build Dense Cloud	15
Build DEM	16
Build Orthomosaic	18
Calculating required index information (for multispectral cameras only)	20
Exporting the results	23
Export Orthomosaic	24

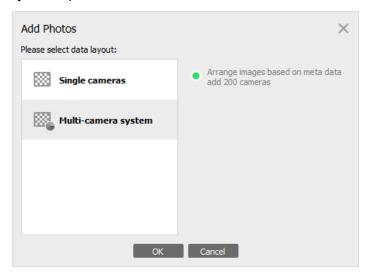
Overview

The following guide describes the standard processing steps for processing ppk data collected by the E400 without ground control points (GCPs) in Agisoft Metashape Profession edition.

Requirements

- 1) Imagery from flight
- 2) Geotags for imagery
- 3) Agisoft metascan professional

Adding photos for standard cameras


Select the *Add photos* command from the *Workflow* menu.

Browse the source folder and select files to be processed then click ok. The images will be added to the cameras tab.

Cameras	X (m)	Y (m)	Z (m)	Accuracy (m)	Error (m)	Ŧ
0						
E 1						
2						
3						
H 4						
5						
6						
1 7						
8						
9						

Adding photos for multispectral cameras

If working with a RGB camera skip to the importing references section of this manual. Open the Workflow menu and choose the Add Photos option. Select all images including reflectance calibration images and click the OK button. In the Add Photos dialog choose Multi-camera system option:

If the images are stored in several folders, the same operation should be repeated for each folder.

Reflectance calibration (for multispectral cameras only)

Agisoft will automatically detect reflectance calibration images taken before and after flight.

Open Tools menu and choose the Calibrate Reflectance option. Press Locate Panels button:

Calibrate Reflecta	ance					×
Images				Pane	l Calibration	
Label	Panel				Band	Reflectance
				1	Blue	
				2	Green	
				3	Red	
				4	Red edge	
				5	NIR	
		Loc	ate panels			Select panel
Parameters						
Use reflectar	nce panels		Use	sun ser	isor	
		Reset	OK	Cancel		

As a result, the images with the panel will be moved to a separate folder and the masks would be applied to cover everything on the images except the panel itself. If you are using the panel for the first time, and its calibration is not added to Metashape Pro internal database yet, you will be prompted to load a calibration from a CSV file:

If you don't have a CSV file with calibration information, you can input calibration values manually at the next step. If you own MicaSense radiometric panel, you can request the corresponding CSV file from MicaSense directly: https://www.micasense.com/prv

After the panels are located, the reflectance values corresponding to each band should be input according to the panel certificate.

Label Panel IMG_0000_1 RP04-1826266-SC (5/5)	Dane		
MG_0000_1 RP04-1826266-SC (5/5)		el Calibration	
		Band	Reflectance
_	1	Blue	0.51
IMG_0001_1 RP04-1826266-SC (5/5)	2	Green	0.51
IMG_0002_1 RP04-1826266-SC (5/5)	3	Red	0.509
	4	Red edge	0.509
	5	NIR	0.508
	-		
Locate panels			Select panel
Parameters			
✓ Use reflectance panels ✓ Use sun	sen	sor	
Reset OK Car	ncel		

Run reflectance calibration (for multispectral cameras only)

Check on Use reflectance panels and Use sun sensor options in the Calibrate Reflectance dialog to perform calibration based on panel data and/or image meta information. Click OK to start the calibration process.

Importing references

To import the camera coordinate data from the CSV file, click *the Import Reference* button on the *Reference pane*. Browse to the file containing recorded reference coordinates and click the *Open* button.

Refe	erence				Ξ×			
簷		★ Q I	á \Lambda 🥼	i 1	¥:			
Impo	ort CSV							×
	rdinate System							
	SS 84 (EPSG::4326)							
	ation angles:			Ya	w, Pitch, Roll			-
	Ignore labels			Thr	eshold (m):		0.1	
Delin	niter		Columns					
٠	Tab		Label: 1	\$	Accuracy		Rotation	Accuracy
	Semicolon		Longitude: 3	\$	8	Yaw:	12	9
	Comma		Latitude: 2		8	Pitch:	10	9
	Space		Altitude: 4		8	Roll:	13	9
	Other:		Ardude.	· · · ·		reon.	Enabled flag:	
	Combine consecutiv	ve delimiters					Enableu liag:	10
Start ir	mportatrow: 1 🌲						Iten	ns: All 🔻
First 2	0 lines preview:							
	Label	Latitude	Longitu	ıde	Altitude			<u>^</u>
1	275.jpg	41.03901672	-81.5350222	24 3	56.856			
2	274.jpg	41.03871075	-81.5350278	88 3	55.6757			
3	273.jpg	41.03842006	-81.5350303	35 3	55.0086			
4	272.jpg	41.03813867	-81.5350382	26 3	55.8031			
5	271.jpg	41.0378734	-81.5350484	47 3	54.8554			-
			O	<	Cancel			

In the *Import CSV* dialog, set the parameters for import (coordinate system, delimiter, columns, etc.)

Geotagging method	Latitude	Longitude	Altitude
РРК	Dependant on base coordinate	Dependant on base coordinate	Dependant on base coordinate
Companion Computer	WGS84	WGS84	MSL

Setting Geotag Accuracy

Click the reference settings tab.

Reference Settings				×
Coordinate System				
WGS 84 (EPSG::4326)				×
Camera reference				
WGS 84 (EPSG::4326)				
Marker reference				
WGS 84 (EPSG::4326)				
Rotation angles:		Yaw, Pitch, Roll		
Measurement Accuracy		– Image Coordinates Accur	асу	
Camera accuracy (m):	10	Marker accuracy (pix):	0.5	
Camera accuracy (deg):	10	Tie point accuracy (pix):	1	
Marker accuracy (m):	0.005			
Scale bar accuracy (m):	0.001			
Miscellaneous				
Capture distance (m):				
	ОК	Cancel		

Change the Camera accuracy based on your geotag accuracy.

Geotagging method	Accuracy
РРК	.05m
Standard Accuracy	5m

Camera Calibration

Select Camera Calibration from the Tools menu.

Camera Calibration					む ×
ILCE-6100, E 20mm F2.8	Camera type:			Frame	
276 images, 6000x4000 p	Pixel size (mm):			0.004	x 0.004
	Focal length (mm):			20	
	V Enable rolling	shutter compens	ation	Film camera with	n fiducial marks
	Initial Adjusted	Bands GPS	6/INS Offset		
	R	eference	Accuracy	Adjusted	Variance
	X (m): 0		0.05		
	Y (m): 0		0.05		
	Z (m): .143		0.01		
	Yaw (°): 0		2		
	Pitch (°): 0		2		
	Roll (°): 0		2		
	🗸 E	nable reference		Adjust GPS/IN	S offset
	Camera label 🔺	Resolution	Camera model	Focal length	Date & time
	0	6000x4000	ILCE-6100	20	2019:06:12 17:20:02
	🛅 1	6000x4000	ILCE-6100	20	2019:06:12 17:34:08
	10	6000x4000	ILCE-6100	20	2019:06:12 17:34:27
	100	6000x4000	ILCE-6100	20	2019:06:12 17:38:31
	101	6000x4000	ILCE-6100	20	2019:06:12 17:38:33
	102	6000×4000	II CF-6100	20	2019:06:12 17:38:34
		ОК	Cancel		

Select the following settings depending on your camera.

A6100	
Rolling shutter	Enabled
PPK Z offset (m)	.143
PPK Z accuracy	.001

RX1RII	
Rolling shutter	Disabled
PPK Z offset (m)	.1529
PPK Z accuracy	.001

A7R IV	
Rolling shutter	Disabled
PPK Z offset (m)	.149
PPK Z accuracy	.001

Altum-PT	
Rolling shutter	Disabled
PPK Z offset (m)	.113
PPK Z accuracy	.001

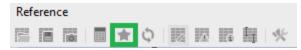
RedEdge-P	
Rolling shutter	Disabled
PPK Z offset (m)	.144
PPK Z accuracy	.001

Align Photos

Select the *Align Photos* command from the *Workflow* menu.

Set the parameters in the *Align Photos* dialog window:

Align Photos	×
General	
Accuracy:	High
✓ Generic preselection	
Reference preselection	Source 🔻
Reset current alignment	
 Advanced 	
Key point limit:	40,000
Tie point limit:	10,000
Apply masks to:	None
Exclude stationary tie point	ts
Guided image matching	
Adaptive camera model fitt	ing
ОК	Cancel

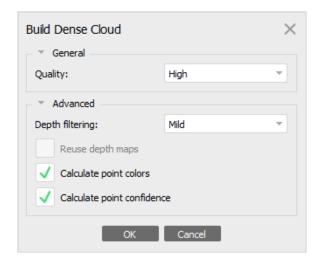

Click the *OK* button. The progress dialog box will appear displaying the current processing status. To cancel the processing, click the *Cancel* button.

Alignment having been completed, computed camera positions, and a sparse point cloud will be displayed in the *Model* view.

Optimize camera locations

Click the **Optimize** toolbar button on the **Reference** pane.

In *the Optimize Camera Alignment* dialog box, check additional camera parameters to be optimized.


Optimize Camera A	Alignment X
General	
🗸 Fit f	🗸 Fit cx, cy
V Fit k1	V Fit p1
V Fit k2	V Fit p2
V Fit k3	V Fit b1
🗸 Fit k4	✓ Fit b2
Advanced	
Adaptive came	ra model fitting
Estimate tie poi	int covariance
Fit additional co	prrections
OK	Cancel

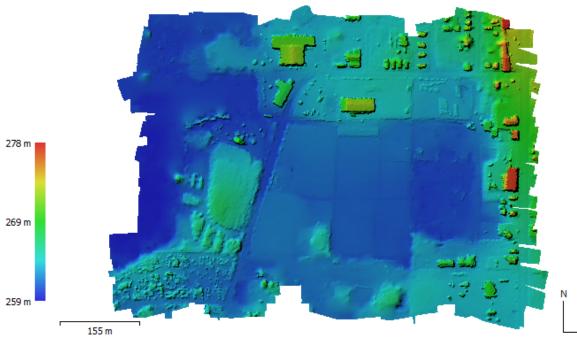
Click the **OK** button to start optimization.

Build Dense Cloud

1. Select Build Dense Cloud command from the Workflow menu.

2. In the *Build Dense Cloud* dialog box select the desired reconstruction parameters and click *the OK* button.

The progress dialog box will appear displaying the current processing status. To cancel the processing, click on *the* **Cancel** button.


Build DEM

Select the *Build DEM* command from the *Workflow* menu.

 Projection 						
Type: 🔹 Ge	ographic	Plan	ar		Cylindri	cal
WGS 84 (EPSG::4326)					Ŧ	*
Parameters						
Source data:		Tie poin	ts			Ŧ
Quality:						
Interpolation:		Enabled	(de	fault)		Ŧ
Point classes: All					Select	
Advanced						
Region						
	-81.5398	260		-81.52	2872	x
Setup boundaries:	01.0000	09	-			
Setup boundaries:	41.0310		-	41.042	2312	Y
		54		41.042	2312	Y

In the *Build DEM* dialog box, set your required parameters.

Click *the* **OK** button. The progress dialog box will appear displaying the current processing status. To cancel processing, click *the Cancel* button.

—е

Build Orthomosaic

Select the *Build Orthomosaic* command from the *Workflow* menu.

Set parameters in the *Orthomosaic* dialog window.

Build Orthomosaic					×		
-	ographi	c 🕘 Plan	ar	Cylindri	cal		
WGS 84 (EPSG::4326)							
Parameters							
Surface:		DEM		-			
Blending mode:	lt) –						
Refine seamlines							
Enable hole filling							
Enable ghosting filte	er						
Enable back-face cu	Illing						
Pixel size (°):		1.2937e-0)7		x		
Metres	Metres 8.75832e-08						
Max. dimension (pix):		4096					
Region							
Setup boundaries:	8.521	980] -	8.531367	x		
Estimate	47.54	8633	-	47.555543	Y		
Total size (pix):	72559	9	x	78896			
	OK	Cance	el	1			

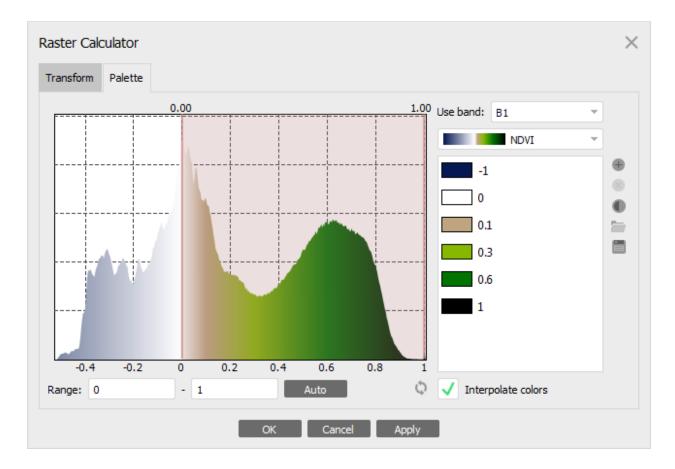
3. Click *the* **OK** button. The progress dialog box will appear displaying the current processing status. To cancel the processing, click *the* **Cancel** button.

Calculating required index information (for multispectral cameras only)

Use the Set Raster Transform option from the Tools menu to open the Raster Calculator dialog.

On the Transform tab specify the index values that you would like to calculate from the source data.

Input Bands:	Outp	out Bands:					
B1 - Blue	1	(B5 - B3) / (B5	+ B3)		-	~	0
B2 - Green	2	2.5 * (B5 - B3)	/(B5 + 2.4 * B3 + 1)		Ŧ	~	×
B3 - Red	3	B5 + 0.5 - (0.5	; * sqrt((2 * B5 + 1)^2	- 8 * (B5 - (2 * B3))))	Ŧ	~	
B4 - Red edge		2					
B5 - NIR							
B6 - LWIR							
+			sqrt	sin	asi	n	
*		/	log	cos	aco	S	
		^	exp	tan	ata		


More than one formula can be input, if it is necessary to export the orthomosaic with several output bands related to the different indices, or if the calculated indices should be represented in false colors mode.

On the Palette tab select how one of the calculated indices should be visualized or use False Colors representation for three output bands (note that for this approach the values of the output bands used should be in 0 - 1 range for proper RGB representation, the values would be automatically scaled to 8-bit RGB representation in False Colors mode).

The following picture shows the representation of the single output band defined on the Transform tab (B1 in this case). The color representation of the index can be selected from the list of presets, loaded from *.clr file or modified manually, if necessary.

Event 38 Unmanned Systems, Inc

Range values under the histogram define the absolute values for the selected index (output band), the color values from the palette section will be scaled to the selected range in the following way: Min. Range value corresponds to the 0 value in the palette color scale and Max. Range value corresponds to 1 value of the color palette:

When the False Colors option is selected the histogram area can be ignored. It is only necessary to select the correspondence between the output bands and RGB colors in the False Colors mode:

Raster Calcula	ator									\times
Transform Pa	alette									
ł	(0.00					1.00	Use band:	B1	
									False Color	*
-								B1		
								B2	2	0
								B3	1	
-										
-0.4	-0.2	0	0.2	0.4	0.6	0.8	1			
Range: 0		- 1			Auto		Q	🗸 Inter	polate colors	
			ОК		Cancel	A	pply			

Exporting the results

Select *Export DEM* command from the *File* menu.

In the *Export DEM* dialog, specify the desired coordinate system for DEM export. Check *Write KML file* and/or *Write World file* options to create files needed to georeference the orthomosaic in the Google Earth and/or a GIS-application, if necessary.

GB camera ex	ample settings	Multispectral ex	xample settings
xport DEM - TIFF	×	Export Orthomosaic	>
Coordinate System		Coordinate System	
WGS 84 (EPSG::4326)	- *	WGS 84 (EPSG::4326)	* *
Raster		Raster	
Pixel size (°):	4.28848e-07 X	Pixel size (°):	6.76925e-07 X
Metres	3.24716e-07 Y	Metres	4.69237e-07 Y
Max. dimension (pix):	4096	Max. dimension (pix):	4096
Split in blocks (pix):	10000 x 10000	Split in blocks (pix):	1024 x 1024
Raster transform:	None 🔻	Raster transform:	Index value 🔻
No-data value:	-32767	Background color:	White 👻
Region		Region	
Setup boundaries:	-81.53865981.524154 X	Setup boundaries:	-119.733934119.726564 X
Reset	41.032201 - 41.041050 Y	Reset	46.291480 - 46.295804 Y
Total size (pix):	33824 x 27253	Total size (pix):	10888 x 9215
Clip to boundary shapes	1	Write KML file	Write World file
Write KML file	Write World file	Write tile scheme	
Write tile scheme		Compression	
Metadata		Image description:	
Image description:		TIFF compression:	LZW 👻
Compression		JPEG quality:	90 \$
Vite tiled TIFF	✓ Write BigTIFF file	Write BigTIFF file	Vite tiled TIFF
✓ Generate TIFF overview	/S	Vrite alpha channel	
Save alpha channel		Generate TIFF overvie	ews

Click the **Export** button to start the export.

Browse the destination folder, choose the file type, and print in the file name. Click *the* **Save** button.

The progress dialog box will appear displaying the current processing status. To cancel the processing, click *the* **Cancel** button.

Export Orthomosaic

Select *Export Orthomosaic* command from the *File* menu.

2. In the *Export Orthomosaic* dialog box specify the coordinate system for the Orthomosaic to be saved in.

Coordinate System			
WGS 84 (EPSG::4326)		•	3
Raster			
Pixel size (°):	2.14424e-07		
Metres	1.62358e-07		
Max. dimension (pix):	4096		
Split in blocks (pix):	10000	x 10000	
Raster transform:	None		
Background color:	White		
Region			
Setup boundaries:	-81.536355	81.525616	
Reset	41.033864	- 41.039475	
Total size (pix):	50081	x 34563	
Clip to boundary shape	S		
Write KML file	Write Wo	orld file	
Write tile scheme			
Metadata			
Image description:			
Compression			
TIFF compression:	LZW		
JPEG quality:	90		
Vrite tiled TIFF	Vrite Big	TIFF file	
Generate TIFF overview			
Save alpha channel			
Save apria charitter			

Click *the Export* button to start the export.

Browse the destination folder, choose the file type, and print in the file name. Click *the* **Save** button.

The progress dialog box will appear displaying the current processing status. To cancel the processing, click *the Cancel* button.